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PAUL LEVY, 1886-1971

In 1919, at the age of 33, Paul Lévy was asked to give three lectures on Calculus
of Prababilities at the Ecole Palytechnique. This began the heroic period in Preba-
bility throughout which Paul Lévy was at the center of the stage: During the fol-
lowing twenty years, “Calculus of Probabilities’’~—which consisted mainly of a
collection of small computational problems—became “Probability theory,” a full-
fledged branch of mathematics, partaking of and contributing to the torrent of
twentieth century mathematics, with concepts, problems and results constantly
bern from its own intuitive backgreund,

In 1919, Paul Lévy was already a renowned mathematician, with over twenty
publications between 1905 and 1914, a period interrupted until [918 by the war,
which he spent in the French artillery. Born in Paris in 1886, son and grandson of
mathematicians, he received the usual—in France—scholastic honars for the ex-
ceptionally gifted: Prix du Concours Général in greek and also in mathematics,
Prix d'Excellence at Lycée Saint Louis in mathematics and also in physics and
chemistry, first at the Concours d’entrée of Ecole Normale Supérieure and second
at the Concours d’entrée of Ecole Polytechnique; he entered the latter, published in
1905 his first paper—on semiconvergent series—and finished in first place. He spent
a year doing his military service and three years at Ecole des Mines. During these
three years, 1907 to 1910, he followed courses at the Sorbonne by Darboux and by
Picard and at the College de France by Humbert and by Hadamard. In 1910, in-
fluenced by Hadamard, he began research on Functicnal Analysis of Volterra and
on Green functiens, his main mathematical preoccupation between [910 and 1914,
and from 1919 to 1922, He abtained his Doctenr &s sciences degree in 1912 and his
thesis became the core of his 1922 book Lecons d' Analyse fonctionnelle, which in
turn formed the core of his book Problemes concrets d' Analyse founctionnelle pub-
lished in 1951, '

In 1913 he was appointed Professor at Feole Nationale des Mines and from
1920 to 1959 he was Professor of Analysis at Ecole Polytechnique. In [964 he was
finally elected to the Académie des Sciences. Beginning in 1905 and continuing
almost to the time of his death on December 15, 1971, he published 10 books and
over 270 papers, of which over 150 are in Probability theory. Here we shall limnit
ourselves to some of the highlights of his prababilistic thought.

Paul Lévy was a painter of the prababilistic world. Like the very great painting
geniuses, his palette was his own and his paintings transmuted forever our vision
of reality. Only a few of his paintings will be described here—some of those which
are imprinted indelibly on the vision of every probabilist. His three main, somewhat
overlapping, periods were: the limit laws period, the great peried of additive proc-.
esses and of martingales painted in pathtimes colors, and the Brownian pathfinder
period.

The three lectures of 1919 were requested to be on “notions of Calculus of Prob-
abilities and the role of Gaussian law in the theory of errors.” The books consulted
by Paul Lévy were those by Bertrand, by Borel and, especially, by Poincaré; the
results of the Russian school-—by Tchebichev, Liapounov and Markov, were not
even mentioned therein. A glance at Poincaré’s book shaws how its critical reading
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2 MICHEL LOEVE

by Paul [évy—a mature and thorough mathematician who, contrary to Poincaré,
considered that probability deserved rigorous mathematical handling—led him
to the rediscovery of the Russian school results, the general concept of probability
law, the method of characteristic functions, and impelled him into his fifteen year
quest for “justification” of the Gaussian law. Paul Lévy’s ideas and results obtained
in 1919 and further developed from 1922 to 1925 were collated in his first book,
Calcul des Probabilités in 1925,

Only discrete and absolutely continuous laws of real random variables X appear
in Poincaré. At once Paul Lévy realizes, independently of von Mises (1919), that
they are but particular cases of the general concept of probability laws as defined by
distribution functions on the real line R, equivalently, by distributions, i.e, prob-
ability measures on R; also he introduces the concept of types of laws.

Poincaré considers real characteristic functions Ee**, which do not always exist
for all u € R. Paul Lévy replaces them by present day characteristic functions
Ee™¥, which exist for all ¥ € R, thus creating the apparatus of Fourier—Stieltjes
transforms which play nowadays such a central role in harmonic analysis. Unknown
to him, some characteristic functions were considered by Cauchy and were used
by Liapounav in his proof of “ Liapounov's theorem.” But Paul Lévy explores them
in depth, to the point that, since then, only improvements of detail have heen ob-
tained. He establishes by now classical inequalities and creates the fundamental
apparatus: correspondence between distributions and characteristic functions
transforms convolutions into multiplications and conversely, and is biunivoque and
bicontinuous. More precisely, Paul Lévy finds the explicit inversion formula and
the so called “continuity theorem’ for characteristic functions, except that he as-
sumes convergence on R of sequences of characteristic functions to be uniform in
some neighborhood of the origin;in 1933 Bochner showed that it suffices to require
continuity at the origin of the limit function.

Thus sprung, fully fledged, from the forehead of Paul Lévy the familiar technique
for the present day theory of limit laws within the far reaching extension by Kol-
mogorov of Poisson's limiting procedure: limit laws are to be those of sequences of
sums D Xue, k = 1,2, - - , ko — = as n — o of independent and uniformly
asymptotically negligible summands, i.e., for every ¢ > 0, max, P{| X.| > ¢/ > 0O
asH — o,

As for the ““justification” of the Gaussian law in the theory of errors, Poincaré, and
following him Paul Lévy, starts from the intuitive idea that the Gaussian law is ap-
proximately the law of sums of very large numbers of approximately equally very
small independent summands. Poincaré’s mathematical translation of this idea was
encumbered by many restrictions and treated purely formally—with no considera-
tion for rigor. Yet, gradually Poincaré's idea leads Paul Lévy to the final solution.
First, using characteristic functions he rediscovers Liapounov’s and Lindeberg’s
results. But it is only in 1934 that he finds the answer: the limit of the laws £(D i X..)
is Gaussian if and only if the laws £{max, X..) converge to the law degenerate at
zero. Independently, Feller obtains the necessary and sufficient conditions for con-
vergence to the Gaussian law by exploiting to its full extent Paul Lévy's apparatus
of characteristic functions. Paul Lévy on the other hand makes little use of them.
For gradually he moved to a more direct way of translating his intuition. He in-
troduced the "' Paul Lévy distance” of probability laws, later extended by Prohorov
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(1953) to the distance of laws in separable metric spaces, then his dispersion function
with basic dispersion inequalities. He reached his quest’s goal by decomposing the
summands into two parts, uniformly small ones and uniformly bounded away
from zero ones, and by means of dispersion inequalities proved that the two sets
could be thought of as asymptotically independent. Using these Paul Lévy methods
some twenty years later, Kolmogorov obtained beautiful approximation results,
since then sharpened by many probabilists.

At one of the 1919 lectures, a listener told Paul Lévy that the Gaussian law was
the only stable one. The same day Paul Lévy disproved this statement by redis-
covering the symmetric stable laws already known to Cauchy and soon thereafter
described in terms of their characteristic functions all stable laws including the
nonsymmetric ones as well as the quasi-stable laws. This led him to the introduction
and investigation of the nowadays familiar concepts of domains and partial domains
of attraction, pursued later by Khintchine (1936).

Paul Lévy's study of stable laws led him to a completely novel approach to the
problem of Limit laws which for twa centuries was the central and, in fact, the only
theoretical problem of Calculus of Probabilities. From Bernoulli (1713) and de
Moivre (1732} to Liapounov {1900) and Lindeberg (1920), it cansisted of the search
of conditions for the limit laws of sequences of normed sums of independent ran-
dom variables with finite secand moments to be Gaussian or degenerate. Paul Lévy
in his 1925 book transforms the ald central limit problem into the search all possible
limit laws for sequences of suitably normed sums of independent (and identically
distributed} random wvariables, not necessarily having finite second moments, and
then for necessary and sufficient conditions for convergence to any given stable law
Paisson’s limiting procedure and his limit law stood isolated and ignered until
1934. Then, in ane of the most important prabability papers ever published, “Sur
les intégrales dont les éléments sant des variables aléatoires indépendantes” {1934)
Ann. Scuola Norm. Sup. Pisa, Paul Lévy, by looking at sample paths of additive
processes, discovers and describes explicitly in terms of their characteristic func-
tions infinitely divisible laws—whose building blocks are Poisson type laws. De
Finetti already had the idea of such laws and in 1932 Kolmogerov described those
with finite seconds moments. Paul Lévy's representation formula for general in-
finitely divisible laws led soon to the definitive formulation and selution of the
present day central limit problem: Paul Lévy indicated and Khintchine {1916)
proved that the family of all limit laws in the Kolmogorov formulation is exactly
that of all infinitely divisible ones; the same year Paul Lévy characterized the sub-
family which consists of all limit laws in the particular case of normed sequences,
And in 1938 necessary and sufficient conditions for convergence to any given in-
finitely divisible law were obtained, independently by Gnedenko, using to its full
extent the Paul Lévy method of characteristic functions, and by Doeblin, using to
its full extent the Paul Lévy methad for the Gaussian limit [aw,

Already in his paper on the Gaussian limit law, Paul Lévy considered the in-
fluence of terms which are not very small and became convinced that a Gaussian
law could be decomposed into a finite number of Gaussian laws only. He was so
convinced of it that part of the paper is devoted to various consequences of this con-
jecture, it was beautifully proved by Cramér (1938) using characteristic functions
and the fact that an entire one of order two must be Gaussian. It is interesting to
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note that Paul Lévy remained quite unhappy with this purely technical proof and
hoped for one which would correspond to his intuition.

Following the Lévy-Cramér result, Khintchine studied decompositions of in-
finitely divisible laws, and Raikov proved that the Poisson law could be decompased
only into Poisson ones. Gradually, Paul Lévy and Khintchine, pursuing this line
of thought, created a new branch of Probability theory—the arithmetic of prob-
ability laws. And recently Linnik has obtained new and deep results in this difficult
subiect.

In 1923 a participant in Hadamard's seminar noticed that in one of the preofs in
Pau] Lévy’s book on Functional Analysis, completeness of L,-spaces was assumed,
and tried without much success to prove this property using convergence in mea-
sure. Paul Lévy intervened, and with the help of Banach who was also present, gave
a proof. It was published and, naturally, it was found to be a proof of the Riesz-
Fisher theorem (1907). Yet, this semipar led Paul Lévy to examine and compare
various types of convergence based upon the concept of probability measure. Mean-
while he decided “to consider other problems than those relative to the character-
istic function or the Gaussian law.” First he decided to do for continued fractions of
numbers chosen at random between O and 1, briefly considered in Borel’'s 1909
paper, what Borel did therein for their decimal expansions. He rediscovered and
proved (1929) a conjecture of Gauss praved independently by Kuzmin {1928),
and sharpened the conjectured convergence of laws to almost sure convergence.
Paul Lévy returned over and over again to the continued fractions subject pursued
aiso by Khintchine, Doeblin and Ryll-Nardzewski. But it is in 1930 that he begins his
second extraordinary productive and fruitful period. He relies more and more on
direct mathematical formulation of his intuitive insights, and introduces and in-
vestigates the cancentration function and its inverse function—the dispersion func-
tion, the symmetrization method and use of medians with corresponding inequalities.
He shows that for independent random variables X, , with probability one, either
the sezies Y (X, — a,) converges for some series of canstants a, or is essentially
divergent (i.e. diverges whatever be these constants), proves that for 2 X, almost
sure convergence and convergence in probability are equivalent, and in 1939 states
also equivalence with convergence in law. He rediscovers and sharpens Khint-
chine's law of the iterated logarithm and proves that for sequences of successive
sums S, = X + --- 4+ X, of essentially divergent series, P[S, > s, infinitely often]
is either O or 1 so that there are only two classes of sequences (s,) for (S,). This gives
its full meaning to the search for criteria for this dichotomy pursued further by
Cantelli, Kaolmogorov and Feller,

In 1934-35, with about 20 publications, Paul Lévy's research reached the height
of its originality and the power and fruitfulness of ideas and results, While finding
at last the “justification” of the Gaussian law which started his probabilistic research
in 1919, he deeply transforms the whole of probabilistic thinking. General additive
processes are introduced and in a few weeks so thoroughly analyzed that only im-
provements of detail have since been achieved; as a consequence general infinitely
divisible laws are explicitly described. Martingales are created and analyzed., Ran-
dom times dominate the search and are utilized throughout. Random analysis with
its basic concepts and problems is born. These ideas and results, collated in the
Paul Lévy 1937 manograph “Théorie de 'addition des variables aléatores,” marks
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the beginning of a new era of Probability theory. In 1967, the thirtieth anniversary
of its publication was celebrated all aver the probability world; more than 150
probabilists sent their congratulations to Paul Lévy.

Paul Lévy writes that ““at the beginning of 1934 I suddenly noticed that any stable
law leads, as does the Gaussian, to a random function that we can abtain, like that
of Wiener, by an interpolation methad. I then decided to define the general form of
a function X(¢) with independent increments, in other words of an additive prac-
ess. ... It suffices to consider the case with X(0) = 0.”” He shows that one can
delete from this process its degenerate discontinuities by including them within a
“centering”’ numerical function so as to leave an additive process whose only al-
most sure discontinuities are nondegenerate jumps at fixed times, independent of
the choice of the centering function. In turn, this set of fixed discontinuities, which
is countable, can be deleted. At this point Paul Lévy introduces unconditionally
convergent series of independent random variables and shows that a series Z X.
which is not essentially divergent can be made unconditionally convergent by se-
lecting suitably the constants a, to be subtracted from the X, . Thus he was left
with an additive process X.(s) with almost surely no fixed discontinuities. It may
have moving discontinuities—at random times; more precisely sample paths X{-, w}
may have jumps at a countable time set varying with . The set of all those moving
jumps is that of, in general, a “compensated sum of infinitesimal increments” of
Poisson type additive processes. There remains finally a sample continuous ad-
ditive process. And Paul Lévy proves it to be Brownian, thus obtaining the con-
verse of the celebrated Wiener's result, The complete Paul Lévy analysis was for-
malized by Itd as follows:

X
I+ xt

where #(-) is a Brownian process and the v, [x, 3} = v.[x, ¥} — v.[x, ¥}, the numbers
of jumps in the time interval [s, 1) of heights in [x, y) xy > 0, are Poisson random
variables with parameters L,,[x, ¥} = L,[x, ¥) — L.x, ¥} independent for disjeint
time intervals [s, 1) and independent for disjoint height intervals [x, y}. Only Paul
Lévy’s admirable probabilistic intuition and sophisticated mathematical technique
could in one sweep completely overcome the many delicate problems arising in
and leading to the foregoing decomposition and analysis of sample paths of addi-
tive processes. The 1934 Paul Lévy representation formula for characteristic func-
tions of general infinitely divisible laws, i.e. laws of the X(z), followed at once from
this analysis; soon thereafter, Khintchine gave a direct and purely analytic proof of
this formula.

Beginning in 1934, Paul Lévy creates and investigates the martingale concept
{which owes its name to Ville). Like the Markov dependence cancept, the martingale
one was born from, and its investigation was guided by, the results obtained in the
case of [ndependent summands. More precisely, they both were born from an
attempt to preserve the law of large numbers,

Paul Lévy noticed that the Bienaimé equality and the Tchebichev method of
proving the law of large numbers remain valid when, instead of centering the sum-
mands at their expectations {in the independence case), they are centered at their
conditional expectations given the predecessors. Thus he is led to work with sum-

XAty = nl0) + [ eddx) = o L)
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mands X, such that, for n = 1, 2, -+, almost suralj, EX (X0, -, X2} =0,
or equivalently E{(S.1 1S, -+, Su) = Su{S. = Xy + -+ + X,), i.e. with mart-
ingales (S, S., --- ). He observes that Kolmogorov's inequality remains valid

for martingales. Exactly as in the case of independence, various almaost sure con-
vergence and stability theorems follow,

But, as usual, Paul Lévy goes much farther. The first martingale convergence
theorem is the celebrated Paul Lévy 0-1 law. It is perhaps one of the most beautiful
results of probability theory; its proof is quite sophisticated while it sounds in-
tuitively abvious when stated in gambling terms: If A is an event defined on the
sequence (X;, Xo, - - ) of arbitrary random variables then P(4 | X\, X2, -- -, X}
converges almost surely to | on 4 and to 0 on A°. In intuitive terms it becomes: A
gambler plays a series of related or unrelated games of any kind with numerical
outcomes. If, say, he will be ruined eventually then, except for a miracle, his chances
of ruin evaluated in terms of already known outcomes approach 100% and the
chances of not being ruined approach 0%.

Furthermare, Paul Lévy uses systematically random times. He measures ““time”
r (randem)} by the sum of the variances conditioned upon the predecessors, (i.e.
every game is given a duration o'(X,+1 | X1, -- -, X.)), introduces the correspand-
ing sums S{r) and under various conditions obtains a large number of their proper-
ties such ags Gaussian convergence for 5(r)/rt and the law of the iterated logarithm
in terms of .

The importance of the martingale concept cannot be overemphasized. In Doob’s
hands {1940) martingales became a powerful tool within Probability theory as well
as within Analysis in general. Martingales, Markov dependence and stationarity
are the only three dependence concepts so far isolated which are sufficiently general
and sufficiently amenable to investigation yet with a great number of deep prop-
erties.

In 1939 begins the third stage of Paul Lévy’s probabilistic revolution. Once more
he returns to his first love, the Gaussian law, with his intuition deepened and his
technique sharpened while living during random times along the paths of martingales
and of additive processes. A new branch of Probability theory is born: fine structure
of Brownian paths.

Pioneering work in Brownian notion was done at the very beginning of the 20th
century by Bachelier, Einstein and Smolukovski; it was purely formal. The first
rigorous approach is due to Wiener (1923). He defined Brownian motion con-
structively and proved that almost all its paths were continuous. Later (1933},
jointly with Paley and Zygmund, he discovered that almost all Brownian paths
were nowhere differentiable. As always, Paul Lévy went much further. In fact, his
concepts and results were so fruitful that they continue to dominate and inspire
warks in Brownian motion and more generally those in Diffusion processes. It
suffices to glance, say, through the Itd and McKean boak Diffusion Processes and
their Sample Paths.

Let X(t} be the Brownian motion function with X(Q0) = 0, ocmitting the negligible
set of nancontinuous paths.

First, Paul Lévy considerably sharpens Wiener’s results. He gives a new con-
structive definition, proves its projective invariance, finds a continuity modulus:
|X(z + h) — X(r)] < c [2]hllog L/]Af] for |A] £ r (random) when ¢ > 1 hut not
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when ¢ < |, deduces its law of the iterated logarithm, shows that the arc length of
(1, X{#)) is infinite in every nondegenerate time interval and, in fact, praves that if
{6, t2, -- -} is a countable set dense in [0, 7) then, letting S, be the sum of squares
of increments of X(¢) aover the u first £'s (reordered increasingly}, S, converges to
¢t almost surely, so that almost no sample path is of bounded variation.

Next, Paul Lévy looks at the function defined by M{(t) = max,<. X(s}, m{(r) =
inf, ., X(s}, shows that the functions | X(-)|, M(-) — X{(-), X(-} — m(-}, have the
same probability distribution, and rediscovers Bachelier’s formal results about the
distributions of M{r}, (M{5), X(r)) and (M(z), X(t}, m(r}). Then he finds that
| X{-)| and M(-) — X(-) have relative extrema everywhere dense.

He introduces ““ passage times’’ in the shape of the inverse function r(-) of M(-)
and shows that it is a stable process of coefficient +—sums of pasitive jumps with
Poissonian number »(h) of parameter x(2/7h)} of jumps of height larger than # in
each interval of length x. This relates directly to his deepest and most influential
results for the set of absolute minima of | X{-)] and M(.} — X(.), which is the
{random} set Z of zeros of X(-): Z is closed, uncountable, with no isolated points,
of Lebesgue measure 0, and (due later to Taylor) of Hausdorff-Besicovitch dimen-
sion }, and its largest member in {0, ¢} obeys the celebrated Paul Lévy “ Arcsin law”’.
Furthermore, Paul Lévy constructs a random time scale, the local time 7{f} which
describes times spent on Brownian paths at 0; in fact his ‘" mesure du voisinage” is
(2/r)4(¢) and is at the roat of varicus “time changes’ so important nowadays in
traveling along Brownian, Diffusion, and Markov paths.

Starting with his 1940 paper on “ Plane Brownian Mation,”" Paul Lévy introduced
and investigated Brownian motions whose values or whaose parameter lie in #-di-
mensional Euclidean spaces and in infinitely-dimensional Hilbert space E. . From
1948 on he was also concerned with < Laplacian® (or Gaussian) processes—essent-
ially integrals with respect to Brownian motion. The wealth of his results, as first
summarized in his 1948 book Processus stochastiques et mouvement hrownien, then
completed in its second edition in 1965, is tremendous. Let us mention one only,
simply because it surprised Paul Lévy himself. If a Brownian motion defined in E,
is known in a sphere, however small its radius, then it is determined in the whole
of E,. He “explained” to himself this astcunding determinism, which recalls that
of apalytic functions but exists only because of infinite dimensionality of E., as
due, contrary to common mathematical sense, not to the regularity but to such an
‘extreme irregularity that all the information about the process in the whole of E,
is already contained in any sphere.”

Throughout his research Paul Lévy met and had ta examine Markov pracesses.
But his ideas did not have the extraordinary impact of the foregoing ones. However,
in connection with Brownian motion in several parameters he introduced and in-
vestigated Markov processes in several parameters. But the most influential was
his 1951 paper on stationary ones with a denumerable state space. There he flushed
into the open the totally unexpected and, then, monstrous possibilities of instan-
taneous and fictitious (or boundary) states which now are part and parcel of Markov
process theory. And so are those of one of his very few direct students, Doeblin,
who died in 1940 at the age of 25, with 26 publications between [936 and 1940, Let
us only mention that he was the ﬁrst to proceed to the apalysis of Markov paths—
under a uniform continuity condition for transition probabilities which leads to
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step sample paths; Doob (1945), upon remoaving the uniformity restriction dis-
covered sample discontinuities more complicated than jumps, and then came Lévy’s
1951 paper. There is no doubt that Doeblin was to be one of the great ones. In fact,
Paul Lévy writes: “One can count an the fingers of one hand those mathematicians
who, since Abel and Galois, are dead so young in leaving such an important oeuvre.”

The foregoing, amang Paul Lévy’s ideas and results were selected partly because
they are {or ought to be} known to every prabability student. Thus he may realize
Paul Lévy's dominant role in the evolution of the old Calculus of Probabilities to
the by now classifical Probability theory. Yet, even today his writings are a treasure
of ideas and results still awaiting further research. Fréchet's comment, “ Your re-
sults are more or less complex according to one'’s perspective,”’ says it well, pro-
vided “complex” is understood also as *deep.”

If one may dare to try to extract the essence of Paul Lévy's pmbabmstm think-
ing, it may be said that his leitmotif since the beginning (1919) is the Gaussian law;
over and over again he starts from it and inexcrably returns to it. But above all he
is a traveller along sample paths (this is why for him Markaov property is always
strong Markov property). Statistical physics has a familiar—the “ Maxwell demon®
who travels along individual paths of particles subject to the deterministic laws of
mechanics; his clock is the same along all paths and he encounters effects of ex-
tremely large numbers of deterministic phenomena in extremely short time inter-
vals. In Probability theory we now also have a familiar—the “Lévy demon’ who
travels along individual sample paths of stochastic processes subject to ““successive
interventions of hazard”; his (random) clock depends upon the paths and he en-
counters effects of, most frequently uncountable, chance phenomena in extremely
short path time intervals. In fact, Maxwell’s demon is but a degenerate form of
Lévy's demon.

Paul Lévy had very few direct probability students since he was not a professor
at a university and did not teach Probability theory at Ecole des Mines or at Ecale
Polytechnique. His influence was primarily through his writings and he was recog-
nized as a great probabilist in Russia and in the United States long before it hap-
pened in his own country. In his writings he described leisurely the mathematical
world he lived in, in clear and beautiful French.

He was a very modest man while believing fully in the power of rational thought.
His [970 boak Quelques aspects de la pensée d’un mathématicien consists of two
parts: “Autobiographic mathématique” and “L’évolution de mes idées sur la
philosophie.” They are a beautifully written completely candid portrait of the man
and the mathematician. Myself, whenever I pass by the Luxembourg gardens, I
still see us there strolling, sitting in the sun on a bench; I still hear him speaking
carefully his thoughts. I have known a great man.

MicHeL Logve
UNIVERSITY OF CALIFORNIA, BERKELEY



