Mechanics of Options Markets

Prf. José Fajardo Fundação Getulio Vargas

Review of Option Types

- A call is an option to buy
- A put is an option to sell
- A European option can be exercised only at the end of its life
- An American option can be exercised at any time
- And others: Bermuda, Asian, Rusian, etc

Option Positions

- Long call
- Long put
- Short call
- Short put

Example: Long Call

Profit from buying one European call option: option price = \$5, strike price = \$100, option life = 2 months

Example: Short Call

Profit from writing one European call option: option price = \$5, strike price = \$100

Example: Long Put

Profit from buying a European put option: option price = \$7, strike price = \$70

Example: Short Put

Assets Underlying Exchange-Traded Options

- Stocks: VALE5,PETR4, GE, IBM
- Foreign Currency
- Stock Indices

SP500(SPX), Ibovespa (IBV), Euro stoxx50 (FESX)

• Futures

Exchange-Traded Options

- FESX: It represents 50 supersector leaders in the 12 euro zone countries Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxemburg, the Netherlands, Portugal and Spain.
- STOXX Europe 50 options : OSTX

Exchange-Traded Options

- SPX: The Standard & Poor's 500 Index is a capitalization-weighted index of 500 stocks from a broad range of industries. The component stocks are weighted according to the total market value of their outstanding shares.
- For a list of all 500 component stocks, please click <u>here</u>.

Exchange-Traded Options

- IBV: is an index of about 60-70 stocks that are traded in the São Paulo Stock Exchange.
- The index is composed by a theoretical portfolio with the stocks that accounted for 80% of the volume traded in the last 12 months
- and that were traded at least on 80% of the trading days. It's revised periodically, in order to keep its representativeness of the volume traded
- In average the components of Ibovespa represent 70% of all the stock value traded.
- IBV Option <u>market</u>:

Specification of Exchange-Traded Options

- Expiration date
- Strike price
- European or American
- Call or Put (option class)

Terminology

Moneyness :

- At-the-money option
- In-the-money option
- Out-of-the-money option

Market Makers

- Most exchanges use market makers to facilitate options trading
- A market maker quotes both bid and ask prices when requested
- The market maker does not know whether the individual requesting the quotes wants to buy or sell

Puts vs Calls

Trading Strategies Involving Options

Prf. José Fajardo Fundação Getulio Vargas

Types of Strategies

- Take a position in the option and the underlying
- Take a position in 2 or more options of the same type (A spread)
- Combination: Take a position in a mixture of calls & puts (A combination)

Positions in an Option & the Underlying

Example

- In 08/03/11 , the share price of TNLP4 was R\$ 42.15. The most liquid option with maturity for September and strike of R\$ 44.00 has a price of R\$ 0.95.
- The investor who bought the stock and sold the option on that date would incur in a final cost of R\$ 41.20.
- If the other investor exercise the option the resulting profit would be 6.8% (R\$2.8=44-41.2).
- If the share price stays below R\$ 44.00, investor will retain the stock and the option premium.

Bull Spread Using Calls

Bull Spread Using Puts

Bear Spread Using Puts

Bear Spread Using Calls

Box Spread

- A combination of a bull call spread and a bear put spread
- If all options are European a box spread is worth the present value of the difference between the strike prices
- If they are American this is not necessarily so.

Butterfly Spread Using Calls

Butterfly Spread Using Puts

Calendar Spread Using Calls

Calendar Spread Using Puts

A Straddle Combination

Strip & Strap

A Strangle Combination

Properties of Stock Options

Prf. José Fajardo Fundação Getulio Vargas

Notation

- *c:* European call option price
- *p:* European put option price
- S_0 : Stock price today
- *K*: Strike price
- *T*: Life of option
- σ : Volatility of stock price

- C: American call option price
- *P:* American put option price
- S_T : Stock price at option maturity
- D: PV of dividends paid during life of option
- *r* Risk-free rate for maturity *T* with cont. comp.

Effect of Variables on Option Pricing

Variable	С	р	С	Р
S_0	+	_	+	—
K	—	+	—	+
Т	?	?	+	+
σ	+	+	+	+
r	+	_	+	_
D	—	+	_	+

American vs European Options

An American option is worth at least as much as the corresponding European option

$$C \ge c$$
$$P \ge p$$

Calls: An Arbitrage Opportunity?

- Suppose that
 - c = 3 $S_0 = 20$
 - T = 1 r = 10%
 - $K = 18 \qquad \qquad D = 0$
- Is there an arbitrage opportunity?

Lower Bound for European Call Option Prices; No Dividends

 $c \geq S_0 - Ke^{-rT}$

Puts: An Arbitrage Opportunity?

- Suppose that
- p=1 $S_0 = 37$

 T = 0.5 r = 5%

 K = 40 D = 0
- Is there an arbitrage opportunity?

Lower Bound for European Put Prices; No Dividends

 $p \geq Ke^{-rT} - S_0$

Put-Call Parity: No Dividends

- Consider the following 2 portfolios:
 - Portfolio A: European call on a stock + zero-coupon bond that pays *K* at time *T*
 - Portfolio B: European put on the stock + the stock

Values of Portfolios

		$S_T > K$	$S_T < K$
Portfolio A	Call option	$S_T - K$	0
	Zero-coupon bond	K	K
	Total	$S_{_T}$	K
Portfolio B	Put Option	0	$K - S_T$
	Share	S_{T}	$S_{T}^{}$
	Total	S_{T}	K

The Put-Call Parity Result

- Both are worth max(S_T, K) at the maturity of the options
- They must therefore be worth the same today. This means that $c + Ke^{-rT} = p + p$

 S_0

Arbitrage Opportunities

- Suppose that c=3 $S_0=31$ T=0.25 r=10%K=30 D=0
- What are the arbitrage possibilities when

Early Exercise

- Usually there is some chance that an American option will be exercised early
- An exception is an American call on a non-dividend paying stock
- This should never be exercised early

An Extreme Situation

• For an American call option:

 $S_0 = 100; T = 0.25; K = 60; D = 0$

Should you exercise immediately?

- What should you do if
 - You want to hold the stock for the next 3 months?
 - You do not feel that the stock is worth holding for the next 3 months?

Reasons For Not Exercising a Call Early (No Dividends)

- No income is sacrificed
- You delay paying the strike price
- Holding the call provides insurance against stock price falling below strike price

Bounds for European or American Call Options (No Dividends)

Should Puts Be Exercised Early ?

Are there any advantages to exercising an American put when $S_0 = 60$; T = 0.25; r=10%K = 100; D = 0

Bounds for European and American Put Options (No Dividends)

The Impact of Dividends on Lower Bounds to Option Prices

$$c \ge S_0 - D - Ke^{-rT}$$
$$p \ge D + Ke^{-rT} - S_0$$

Extensions of Put-Call Parity

• American options; D = 0

$$S_0 - K < C - P < S_0 - Ke^{-rT}$$

- European options; D > 0 $c + D + Ke^{-rT} = p + S_0$
- American options; D > 0

$$S_0 - D - K < C - P < S_0 - Ke^{-rT}$$